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ABSTRACT

Recent terrorist attacks have sprung a need for a large scale explosive detector. Our group has developed
differential reflection spectroscopy which can detect explosive residue on surfaces such as parcel, cargo and
luggage. In short, broad band ultra-violet and visible light is shone onto a material (such as a parcel) moving on
a conveyor belt. Upon reflection off the surface, the light intensity is recorded with a spectrograph (spectrometer
in combination with a CCD camera). This reflected light intensity is then subtracted and normalized with
the next data point collected, resulting in differential reflection spectra in the 200-500 nm range. Explosives
show spectral finger-prints at specific wavelengths, for example, the spectrum of 2,4,6, trinitrotoluene (TNT)
shows an absorption edge at 420 nm. Additionally, we have developed an automated software which detects the
characteristic features of explosives. One of the biggest challenges for the algorithm is to reach a practical limit
of detection. In this study, we introduce our automatic detection software which is a combination of principal
component analysis and support vector machines. Finally we present the sensitivity and selectivity response of
our algorithm as a function of the amount of explosive detected on a given surface.

Keywords: Explosive detection, support vector machines, PCA, hyperspectral data, differential reflectometry,
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1. INTRODUCTION

In the aftermath of 9/11 and the attempted shoe bombing of the American Airlines Flight in December 2001,
there has been a dramatic increase in the explosive detection research to decrease the threats at the airports,
parcel screening checkpoints, as well as at parks, roadsides and public transports.1–6 Transportation Security
Administration (TSA) screens over 625 million passengers a year through 2200 security checkpoint lanes; cargo
industry handles 43 million metric tons of freight annually, and the United States Postal Service delivers over 80
billion pieces of first-class mail. Given these large numbers, what we need are fast and efficient systems that can
scan large volumes of luggage and parcel, do not need an operator, are sensitive to trace amounts and that are
not restricted to any chemical groups such as nitrogen. With such systems, it should be possible to scan every
bag and every parcel that goes through a screening point without infringing on individual rights nor disrupting
the flow of goods or people.

At the University of Florida, we have developed the differential reflectometer (DR) (also known as the
differential reflection spectrometer) that detects explosive materials on surfaces such as luggage, parcels, and
mail.7–17 The schematic of the system is shown in Fig. 1(a), where the detector is placed at the top of the
conveyor belt. The detector is composed of the components shown in Fig. 1(b), where a broad band ultra violet
(UV)-visible light source is shone onto a conveyor belt, and the reflected light is collected with a spectrometer and
recorded with a CCD camera. The spectrometer separates the broad band light into the wavelengths between
200nm and 6002nm, and the spectra collected from each pixel of the probed surface is the reflectivity at that
pixel, denoted by R. As the luggage moves on the conveyor belt, two consecutive measurements are recorded,
which are denoted by R1 and R2, and differential reflectogram (DR) is computed as the normalized difference
in reflectivity, given by

∆R/R̄ = 2(R2 −R1)/(R1 +R2).
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Figure 1. Schematic of the system. (a) The explosive scanner is placed at the top, and scans each luggage as they pass on
the conveyor belt. (b) The optical plot of the DR system. A a broad band ultra violet (UV)-visible light source is shone
onto a conveyor belt, and the reflected light is collected with a spectrometer and recorded with a CCD camera.

.

With DR, explosives show signature patterns at specific wavelengths. For example, spectra of TNT shows a
sudden decrease at 420nm as shown in Fig. 2. In this figure, several other visually confusers are displayed, such
as flour, Splenda and salt. Each spectra is obtained from a single pixel, and several spectra of the same color
are obtained from different pixels of the same substance. This shows the reproducibility of the DR system.

2. SOFTWARE

About 2000 TNT spectra and 23000 non-TNT spectra were collected with various amounts of TNT placed on
handbags, clothes and boards as the background. In these data acquisitions, it was observed that the height
of the TNT shoulder is determined by the amount of TNT in a given pixel. This aspect is shown in Fig. 3
where the log-magnitude of the spectra was plotted as a histogram. Consider a data set of observations {an}
where n = 1, ..., N indicates the data index, and an is of dimensionality D, denoted as a = [a1, ..., aD]. The

log-magnitude of a TNT spectrum is computed as log
√∑D

d=1(ad)
2. When we display the number of TNT

spectra in a given bin of similar log-magnitudes, i.e. the histogram, it can be seen that the number of samples
can roughly be divided into four as shown in Fig. 3. In the rest of this paper, we consider the samples on the
very left side as low magnitude, the samples in the middle as medium magnitude, and the samples on the right
hand side as the high magnitudes. Four samples from each of these bins are displayed in Fig.4. We compute the
signal to noise ratio (SNR) of each TNT spectrum as the amplitude of the noise on the right hand side of the
spectrum multiplied by four and divided by the height at the 420nm shoulder. These SNR rates correspond to
amounts of roughly 400 ng, 2 µg, and 100 µg in Fig.4(b-d).

For classification of each spectrum into TNT vs non-TNT classes, each spectrum was filtered with a median
and an averaging filter, and cropped to be between the wavelengths of 350nm-450nm. To further reduce the
dimensionality of the data, Principal Component Analysis (PCA) was applied, and each spectrum was projected
onto the most important 5 eigenvectors. This new (projected) data will be denoted as x. The details of PCA were
given in.16 Then, Support Vector Machine18 classifiers were trained that maximize the margin among the two
classes.19 For a feature-space transformation ϕ(xn) that is related to a Mercer Kernel, SVM finds a hyper-plane
wTϕ(x)+ b = 0 in the kernel space, that has the largest distance to the nearest training data points of any class.
To find the parameters w and b of the hyperplane, SVM solves a constrained optimization problem given as:

E-mail: seyuksel@cise.ufl.edu, dubroca@ufl.edu, rhumm@mse.ufl.edu, pgader@cise.ufl.edu

Proc. of SPIE Vol. 8390  83900B-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/25/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



D
R

R
 (

a.
u.

)
,

0

Figure 2. TNT versus the visual confusers. TNT shows a sudden decrease at 420nm which we refer to as TNT’s signature.
This signature is different from the visual confusers such as flour, Splenda and salt as shown. Here, the C-pad refers to
the carbon pad, which was used as the background for all of these substances. Each line represents a spectrum obtained
from one pixel. Several spectrum of the same color show the reproducibility of the DR system, as each line was obtained
from a different pixel of the same substance.

min
w,b

max
α

{1
2
∥w∥2 −

N∑
n=1

αn[yn(w
Tϕ(xn) + b)− 1]}

where α = (α1, ..., αN )T are Lagrange multipliers, and yn is either 1 or 1 such that {yn ∈ {−1, 1}}Nn=1, indicating
the class to which the point xn belongs.

In order to classify new data points using the trained model, we evaluate the sign of y(x), defined by:

y(x) = wTϕ(x) + b .

A dataset of 25000 spectra composed of TNT and non-TNT spectra were used, and the SVM classifiers
were tested and trained using 2-fold cross validation with a polynomial kernel ϕ. As previously stated, TNT
spectra has lower magnitudes for lower amounts of TNT, as shown in Fig. 3. Therefore, training a single SVM
classifier does not generalize well to all of the data. This aspect is shown in Fig. 5 where an SVM was trained on
TNT spectra with high magnitudes, and tested on TNT with high, medium and low magnitudes. The receiver
operating characteristic (ROC) curves of this classifier indicates that the detection of small amounts of TNT is
not reasonable with this classifier. To solve this problem, we trained three classifiers that better capture the
properties of TNT in each bin. Hence, on the transformed space, three SVM classifiers were trained, one for
low magnitude TNT spectra, and one for medium, and one for high magnitude TNT spectra. These results are
displayed in Fig. 6 where we are able to get good detection rates for every magnitude of TNT.
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Figure 3. The software.

3. CONCLUSION

In this study, we have described the differential reflectometry system with both its hardware and software. For
the DR software, we divided the TNT spectra into low, medium and high magnitudes and trained SVM classifiers
for each of these magnitudes. In doing so, we have increased the classification rates to levels that were not possible
by training a single SVM classifier. Still, there is room for improvement at the low magnitude levels, and our
future work is on employing end-member detection techniques to better identify the explosive signatures. With
the design of classifiers that can identify these signatures, it should be possible to eventually check every piece
of luggage, cargo, and passengers that boards an aircraft.
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Figure 4. TNT signals corresponding to various amounts of TNT. Red is the original signal, and blue is the same spectrum
after median and averaging filters. Roughly, the given signal to noise ratio (SNR) values correspond to 400 ng, 2 µg, and
100 µg in (b-d).
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Figure 5. A single SVM classifier was trained on TNT data with high magnitudes, and tested on TNT data with high
(blue ROC), medium (red ROC) and low (green ROC) magnitudes of TNT.
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Figure 6. Three SVM classifiers were trained with magnitudes of high, medium and low TNT. The SVM trained on high
amounts of TNT were tested against non-TNT signals and TNT signals of high magnitude (blue ROC). Similarly, the SVM
trained on medium amounts of TNT were tested against non-TNT signals and TNT spectra with medium magnitudes
(red ROC); and the SVM trained on low amounts of TNT were tested against non-TNT signals and TNT spectra with
low magnitudes (green ROC).
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